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Abstract 
The problem of uniqueness of the low-resolution shape 
determination from small-angle scattering by isotropic 
monodisperse systems is considered. The particle shape 
is represented by the envelope function parameterized 
using spherical harmonics as described in a previous 
paper [Svergun & Stuhrmann (1991). Acta Cryst. A47, 
736-744]. Computer simulations are made on the model 
bodies with sharp boundaries exactly represented by 
spherical harmonics. If the number of independent pa- 
rameters describing the shape is 1 to 1.5 times the 
number of Shannon channels covered by the data set, 
the shape restoration is found to be unique and stable 
with respect to the random and systematic errors. The 
resolution limits of the straightforward shape determi- 
nation are connected to the computational accuracy of 
the model intensities; with current algorithms, shapes 
described by 15 to 20 independent parameters can be 
uniquely determined. The results form a basis for an 
ab initio low-resolution shape determination in terms of 
spherical harmonics. 

1. Introduction 
In low-resolution diffraction studies, homogeneous 
models often serve as a good approximation to 
the structure of the object. In particular, this is 
the case for small-angle scattering (SAS) studies 
of biological macromolecules in solution (Feigin & 
Svergun, 1987; Koch, 1991). The SAS intensity l(s) 
from a dilute monodisperse system of dissolved particles 
is proportional to the scattering from a single particle 
averaged over all orientations [s denotes the modulus of 
the momentum transfer vector s, s = (47r/A)sin0, 
A is the wavelength and 20 the scattering angle]. 
The spherical average leads to a significant loss of 
information in the scattering data which restricts the 
resolution to the range of about 2-10 nm. This justifies 
the interpretation of the SAS data in terms of the 
particle shape, which still provides valuable information 
about the quaternary structure of native biopolymers in 
solution. 
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Experimental data fitting using simple approximations 
like triaxial ellipsoids or more complicated models built 
from spheres (see e.g. Feigin & Svergun, 1987) is 
often used to describe the particle shape, the main 
problem being the construction of a model that fits 
the available data. In our previous paper (Svergun & 
Stuhrmann, 1991), we described changes to the direct 
shape determination method of Stuhrmann (1970b) that 
improve the fit to the scattering curves and proposed 
a strategy for low-resolution shape determination. The 
principal question that remains open in structural studies 
of biopolymers in solution is whether the low-resolution 
shape determination is unique, in other words, whether 
two shapes, being significantly different at low resolu- 
tion, can yield scattering curves indistinguishable from 
each other within the experimental errors? 

It is obvious that in the general case no unique 
solution exists as it is impossible to determine three- 
dimensional shape from one-dimensional intensity un- 
ambiguously. Granted that the information content in 
SAS is low, only a few parameters can be extracted from 
the scattering data; at low resolution, however, these 
may suffice to describe the particle shape adequately. If 
(i) the parameterization is general (that is, if any shape 
can be approximated by the chosen set of parameters at 
the given level of resolution) and if (ii) the parameters 
providing the best fit to the given scattering data can 
be uniquely determined and if (iii) their determination 
is stable with respect to the experimental errors, one 
can say that the low-resolution shape determination is 
unique. 

A quantitative estimate of what 'a few parameters' ac- 
tually means follows from Shannon's theorem (Shannon 
& Weaver, 1949; Moore, 1980; Taupin & Luzzati, 1982). 
The particle scattering intensity I(s) is an analytical 
function that is completely defined by its values in 
the sampling points (Shannon channels) l(s~), s k = 
kTr/Dmax, k = 0, 1, . . .  , c~, where Dma x is the maximum 
particle size. Thus, given the scattering curve in the 
interval [Smin, Smax] , the number of Shannon channels 
N s = (Sma x - S m i n ) D m a x / T r  provides guidance on how 
many parameters can be extracted. At the same time, 
full information about the entire analytical function is 
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Table 1. Rto factor o f  restoration o f  model shapes (in %) 

Range B Range C Range D 
Exact Noisy Exact Noisy Exact Noisy 

Model data data data data data data 

L - - 3  N ~ = 2  N ~ = 4  N ~ = 6  

7.4 10.4 4.2 6.1 1.4 5.1 
9.9 33.0 0.2 5.0 0.5 1.4 

11.1 27.1 7.9 44.0 5.4 10.2 

L = 4  N ~ = 3  N s = 7  N~= 13 

9.2 13.3 12.4 11.6 3.9 9.2 
10.7 17.2 8.3 25.3 3.8 10.0 

Quazi-real 
conditions 

N s = 6  

5.9 5.3 5.9 

N s = 1 3  

10.0 10.4 10.0 

6.3 

10.4 

contained in any finite contiguous portion of it. A 
scattering curve measured with the angular increment 
much smaller than the sampling distance 7r/Dma x can in 
principle be extrapolated beyond the experimental range 
[analytical continuation well known in optical image 
reconstruction, see e.g. Hunt (1994)], thus providing 
more than N s independent parameters. The quality of the 
analytical extrapolation (and therefore of this additional 
information) depends on the experimental errors ranging 
from perfect extrapolation for error-free data to absurd 
extrapolations at high noise levels. 

One can therefore expect that the models described by 
N I ~- N s independent parameters can be uniquely deter- 
mined. At low resolution, particle shape is conveniently 
parameterized using the envelope function of Stuhrmann 
(1970b). In this paper, we perform model calculations 
to study the uniqueness of the shape determination in 
terms of this parameterization. 

2. Theory 
A general model of the particle shape applicable to a 
wide variety of homogeneous particles at low resolution 
is given by the angular envelope function F(O)): 

1, 0 < r < F(O)) 
p(r) = O, r_~ F(O)), (1) 

where p(r) is the scattering density, which equals 1 
inside the particle and 0 elsewhere, and (r, O)) = (r, 0, qo) 
are spherical coordinates. The envelope function is con- 
veniently parameterized using the multipole expansion 

L l 

F(O)) -~ FL(O) ) : E E f/mYlm(Cd) , (2) 
l=Orn=-I 

where R 0 is the radius of the equivalent sphere. Thus, the 
particle shape is parameterized by (L+ 1) 2 numbers and 
the accuracy of this representation increases with L due 
to the orthogonal properties of the spherical harmonics 
[FL(O) ) ~ F(O)) with L --~ cx~]. 

Following Stuhrmann (1970a,b), the shape scattering 
intensity is expressed as 

oo l 
I(s) = ~,  E 27r21A,m(S)l 2, (4) 

l=Om=--I 

where the partial amplitudes Alm(S ) are represented by 
the power series 

Aim(S) = (is)l(217r)ll2 P~ ((_l)pf/(d/+ 2p+ 3) 
p=O 

× {2Pp!(l+ 2 p +  3)[2( /+p)  + 1]!!}-is 2p) 

(5) 

and the coefficients of the qth power of the shape 

f/(q) m = f[r(O))]qY*llm(O)) dO) (6) 
t o  

are readily evaluated from the f/reValUeS using the re- 
currence relation of Svergun & Stuhrmann (1991). Note 
that, although the series (4) is infinite, the contribution 
of the partial amplitudes with l > L is relatively small. 

3. Shape determination 

Given the experimental scattering curve lexp(S) speci- 
fied for N points si, the shape determination can be 
performed by minimizing the least-squares deviation 
between lexp(S) and l(s): 

N 
where Elm(O)) are spherical harmonics and the multipole RE(lexp, f/m) = E {[Iexp(Si)  --  l ( s i ) ] 2 W ( s i ) }  
coefficients f /mare  complex numbers: i = i  

flm -- f f(O))Y~lm(O)) dO). (3) × [lexp(Si)2W(si)] , (7) 
to i=1 

The spatial resolution of the shape representation (2) is where W(s) is a weighting function, e.g .  W ( s i )  - -  
defined by the truncation value L as 6 -~ 7rRo/(L + 1), o--l(Sg), where cr(si) is the standard deviation in the ith 
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point. Starting from an initial shape described by the 
set of coefficients ¢(start) the coefficients providing the Jim ' 

best fit t o  lexp(S) Can be found by an iterative non-linear 
optimization procedure (see e.g. Gill, Murray & Wright, 
1981). 

A practical non-linear minimization requires both 
fast calculation of the functional (7) and an effective 
optimization algorithm. The details of the procedures im- 
proving the speed and accuracy of the evaluation of l(s) 
from the given set of coefficients fire using (4)-(6) have 
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Fig. !. Model-shape determination for L = 3. (a) Column A: model 

bodies. Columns B-D: results of  the shape determination using 
the ideal l(s) calculated from model bodies in the ranges [0, 0.2], 
[0.7, I] and [0, 1 ] nm -~ , respectively. (b) Scattering from the bodies 
in the top row: curves ( I ) - (3)  correspond to the bodies A-C, 
respectively; scattering from the body D is not distinguishable 
from that of  model A. The double arrows indicate the angular 
ranges used to restore the bodies B and C. The top axis indicates 
the corresponding Shannon channels (in units of  sDm~,/rr, where 
Dma~ -- 18.3 nm is the maximum size of  the model particles). 

been described elsewhere (Svergun & Stuhrmann, 1991; 
Svergun, 1994). For the minimization of (7), the software 
package NL2SOL was used based on the algorithm of 
Dennis, Gay & Welsch (1981). This algorithm utilizes 
the least-squares structure of the functional and proves 
to be much more effective than the general-purpose (e.g. 
gradient) methods. Application of NL2SOL significantly 
improved the convergence and allowed much better fits 
to the data [up to 4-6 orders of magnitude in the value 
of the functional (7) compared to the variable metrics 
methods we used earlier (Svergun & Stuhrmann, 1991)]. 

In all model calculations below, coefficients of the 
power series (5) up to Pmax = 40 (addition of extra terms 
did not improve the accuracy due to the rounding errors) 
were used to evaluate the rational Pad6 approximant 
as described by Svergun (1994), yielding an extended 
range of convergence over s. The intensity series (4) 
was truncated at l - L + 5, thus making the termination 
effects negligible. The functional to be minimized was 

~ ( l e x p '  fire) = g2(lexp'flm) + #r~o "Jr- liB2, ( 8 )  

where r 0 and H are the coordinates of the geometrical 
center and the relative measure of negativity of F(w), 
respectively. The first penalty term keeps the particle 
center close to the origin, the second ensures that F(•) is 
positive definite (# and v are self-adjustable multipliers, 
both initially of order of 10-2). 

Our shape-determination program running on the 
Sparc-20ZX Sun workstation is coupled with the 
specially developed interactive three-dimensional solid 
rendering program ASSA. This allows one to monitor the 
fit to the experimental data and to follow the evolution 
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Fig. 2. R~ factors of  the shape restoration as functions of the angular 
range. (1)-(3) correspond to the restoration of different bodies at 
L = 3 (column A in Fig. la),  (4)-(5) to the restoration of  body 
A in Fig. 3(a) at L = 4 using two different initial approximations. 
Positions of  the Shannon channels for L -- 3 and 4 differ because 
of  the different Dm~. 
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of  the shape during minimizat ion.  A S S A  was also used 
to produce the shaded models in the figures below. 

4.  M o d e l  c a l c u l a t i o n s  

The first series of  model  calculations was performed 
on error-free data. Continuous scattering curves were 
simulated by evaluating the scattering from models  on 
N = 100 knots on finite intervals and the simulated data 
sets were used for the shape restoration. In the absence 
of  experimental  errors, the weight ing function W ( s )  = s 2 

was taken (Svergun & Stuhrmann,  1991). 
Fig. l (a)  presents three model  shapes generated with 

the spherical harmonics  up to L = 3 (that is, each 

described by 16 parameters) and their restorations from 
different portions of  the simulated scattering curves. In 
all cases, a sphere was used as the initial approximation. 
The first model (top row) represents a globular particle 
whereas the two others are rather anisometric.  The 
scattering curve for the first model is displayed in 
Fig. l (b)  along with the scattering from the restored 
shapes. In this and subsequent  figures, the scattering 
curves are presented also beyond the angular ranges 
used for the shape restoration to illustrate the analytical 
continuations. All the model shapes have the same 
max imum size Dma x = 18.3 nm and the corresponding 
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Fig. 3. Model-shape determination for L = 4. (a) Central body A 
represents the initial model, bodies B-D are obtained by restorations 
using the angular ranges [0, 0.5], [1, 2] and [0, 2] nm -I ,  respec- 
tively, starting from a spherical initial approximation (top row) or an 
anisometric initial approximation (bottom row). (b) Corresponding 
scattering curves (notations are the same as in Fig. 1, curves from 
the restored models in the top row are presented, Dm~ -- 20.3 nm). 
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Fig. 4. Model-shape determination for L = 3 in the presence of random 
errors using the same angular ranges as in Fig. 1. (a) Model bodies 
and their restorations (notations are the same as in Fig. la). (b) 
Scattering from the bodies in the top row: (1) ideal scattering from 
the initial model A; (2) the same curve with 10% relative noise 
added; (3) scattering from the restored body D. 



D. I. SVERGUN, V. V. VOLKOV, M. B. KOZIN AND H. B. STUHRMANN 423 

Shannon channels are indicated in the upper axis in 
Fig. l(b). As the orientation of the restored shapes 
is arbitrary, for the comparison they are rotated to 
minimize the R,, factor 

R 2 = f [ F m ~ , ( w  ) - Frestored(W)] 2 dw 
Od }-' 
X [rmodel (W)] 2 dw (9) 

The surprisingly good restorations obtained even from 
very limited portions of the scattering curves (Table 
1) indicate that the contributions from the low-order 
spherical harmonics are easily distinguishable in the 
scattering curve. It is worth noting that the R,, factor 
is significantly improved when the number of Shannon 
channels N s in the range used reaches the number of 
independent parameters in the model (Fig. 2). The latter 
[N t = (L + 1 )  2 - 6 = 10] is smaller than the total 
number of parameters in (2), being reduced by six due 
to the arbitrary orientation of the particle and fixing its 
geometrical center at the origin. 

In the simulations for the model structures up to L = 4 
(19 independent parameters, Dma X = 20.3 nm), the shape 
restoration was performed starting from different initial 
approximations. The top row in Fig. 3(a) corresponds to 
the spherical initial approximation whereas the shapes 
in the bottom row were obtained starting from an aniso- 
metric shape with artificially enhanced contribution from 
higher harmonics. Increasing the number of parameters 
worsens the numerical stability of the algorithm, and 
therefore the use of restricted portions of the scattering 
curve (Fig. 3b) leads to higher R,, factors than those 
for L = 3. However, extending the fitting range allows 
practically unambiguous shape restoration independent 
of the initial approximation [Table 1 and Fig. 3(a), 
column D]. 

To check the stability of the procedure with respect 
to random errors, Gaussian noise was added to the 
simulated scattering curves and the shape restoration 
was done using the error-containing data. Figs. 4 and 
5 and Table 1 illustrate the results obtained on the same 
models and for the same angular ranges as above with a 
relative noise of 10% added. Use of limited portions of 
the scattering curves in the presence of noise, especially 
for L = 4, gives results that depend on the initial 
approximation and may deviate significantly from the 
models. At the same time, the full ranges (6 and 13 
Shannon channels for L = 3 and L = 4, respectively) 
still ensure a reasonable restoration of the initial models 
in spite of the high level of random errors. 

The example in Fig. 6 presents the restoration of the 
model shapes in quasi-real conditions: for both L = 3 
and L = 4, the Guinier portions of the scattering curves 
were cut out, the Gaussian noise of 3% was generated 
and a constant (equal to the last intensity value) was 
added simulating the systematic deviations (Figs. 6b,c). 

In Fig. 6(a), four restorations for each model structure 
are given that differ by the initial approximation and by 
the random sequence taken to generate the noise. For 
L = 3, the solution is practically independent of these 
factors; for L = 4, minor variations are observed but the 
resulting shapes do not differ from the model body more 
than R~ = 10.4% (Table 1). 

5 .  L i m i t a t i o n s  

The success of the shape restoration depends not only 
on the efficiency of the minimization technique but also 
on the computational accuracy in evaluating l(s). Fig. 7 
presents the relative error in the numerical evaluation of 
l(s) according to (4)-(6) as a function of the number of 
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Fig. 5. Model-shape determination for L -- 4 in the presence of random 
errors using the same angular ranges as in Fig. 3. (a) Model shape 
and its restorations (notations are the same as in Fig. 3a). (b) (I) 
ideal scattering from model A; (2) the same curve with 10% relative 
noise added; (3) scattering from the restored body D, top row. 
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Shannon channels [the estimation of the computational 
errors followed the finite-differences-table scheme of 
Hamming (1962)]• The error grows exponentially with 
s because the amplitudes Atm(S ) are evaluated by the 
power series (5), which tends to diverge as the argument 
increases. The range of acceptable accuracy (61/1 < 
10 - 6  c o v e r s  N s = 15-17 Shannon channels; beyond this 
interval, the numerical errors worsen the results of any 
non-linear minimization procedure. 

Better acctuacy at higher angles is provided by the 
numerical integration 

F(w) 

A,m(S ) = il(2/'rr) 1/2 f Ylm(~d)dw f jl(sr)r 2 dr. (10) 
t,., 0 

As seen from Fig. 7, the numerical errors in this case 
do not significantly increase with s and the use of (10) 
becomes superior beyond the 15th Shannon channel. 
Numerical integration, however, is a time-consuming 

procedure and would lead to extremely large computing 
times to minimize (8). 

Accumulation of the numerical errors imposes a reso- 
lution limit for the straightforward shape determination 
by restricting the number of model parameters that can 
simultaneously be refined. This is best illustrated in Fig. 
8 where the three model bodies in Fig. 8(a) are each 
described by 30 independent parameters (L = 5) and 
display similar gross features but differ in finer details. 
The corresponding scattering curves in Fig. 8(b) differ 
by less than R t = 10 -6 in the range 0 < s < 2nm -] 
(13 Shannon channels). In fact, shapes A and C were 
restored from the exact scattering curve of shape B in this 
interval starting from different initial approximations. 
Theoretically, as the curves differ for s > 2 nm -] ,  the 
use of a wider angular range in the shape determi- 
nation should have improved the solution. Practically, 
the computational errors at higher angles deteriorate the 
search direction so that further minimization becomes 
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Fig. 6. Model-shape determination in quasi-real conditions. (a) Initial model (column A) and its restorations starting from different initial 

approximations (columns B-E). Top row: L = 3; bottom row: L = 4. (b) and (c) Scattering curves: (1) ideal scattering from the initial 
models; (2) the same curves with 3% relative noise and the constantsadded; (3) scattering from the restored bodies from column B. 
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impossible. Actually, the power-series representation (5) 
diverges beyond s = 3.7 nm-i  and the curves in Fig. 8 
were evaluated using the direct integration (10). 

6 .  D i s c u s s i o n  

The model calculations performed in this study strongly 
suggest that the low-resolution shape determination for 
the error-free data is unique. Using the models based 
on envelope functions represented with spherical har- 
monics, it was not possible to find two different shapes 
at the same resolution (that is at the same L) that 
produce exactly the same scattering curve. In particular, 
the example in Fig. 8 indicates that the outer parts of the 
scattering curves do contain information about the finer 
details of the particle shape in contrast to the opinion 
(e.g. Taupin & Luzzati, 1982) that l(s) beyond some 
scattering angle is fully described just by two parameters 
using Porod's law. 

From the practical point of view, the most important 
conclusion is that the shape restoration is stable with 
respect both to termination effects and to experimental 
errors. In the presence of statistical errors, a reasonable 
shape restoration is achieved by fitting the portions of the 
scattering curves containing fewer Shannon channels N s 
than the number of independent parameters in the model 
N t (N I -~ 1.SNs). The reason is that data are oversampled 
(see Introduction) and the problem is non-linear, that 
is, the fire coefficients produce correlated contributions 
to l(s). For a simple system of linear equations, the 
condition N t > Ns would degenerate the problem allow- 
ing a manifold of totally different solutions. For shape 
determination, it worsens the accuracy of the restoration 
but preserves the main features. Of course, by lowering 
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Fig. 7. Relative computational errors for different methods of evaluat- 
ing l(s): (l)  using power series (5); (2) using numerical integration 
(10). 

N s too much, quantity is transformed into quality and 
one may arrive at a completely different shape as shown 
in Fig. 5(a). 

The spherical harmonics represent a full set of orthog- 
onal functions and thus any envelope function F(w) can 
be represented with their linear combination. The quality 
of this representation is improved with the resolution but 
the gross features of the particle are adequately described 
already at low multipole orders (L ~ 4). Therefore, the 
above results demonstrating the potential and limitations 
of the shape restoration in terms of spherical harmonics 
form a basis for an ab initio shape determination from 
the SAS data. 

The limitations on the number of parameters that 
can simultaneously be determined do not mean that the 
structures with L > 4 cannot be reconstructed. If lower- 
order harmonics are known and fixed, the refinement of 
the higher-order coefficients is straightforward. In our 
model calculations (not shown) using the range over 13 
Shannon channels, all 15 fire coefficients of the seventh 
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Fig. 8. Ambiguity at L = 5: (a) three bodies (A--C) in two different 
orientations (top and bottom rows). (b) Corresponding scaUering 
curves (1)(3). For explanations see text. 
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order are readily restored provided the coefficients from 
l = 0 to l -- 6 are known. One can therefore improve 
the resolution using a chain refinement by taking into 
account more harmonics in series (2) and extending the. 
fitting range. 

As the present paper deals with the uniqueness of 
the shape restoration in principle, the model calculations 
were restricted to the ideal case, namely, to the envelopes 
with sharp boundaries exactly described by the limited 
number of spherical harmonics. In practical applications, 
deviations from the ideal model [e.g. finite width of the 
particle-solvent interface, truncation effects in the rep- 
resentation (2)] should be taken into account. Practical 
aspects of the shape determination and the details of 
our program package will be presented in a forthcoming 
paper. 
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